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Abstract
Utilizing the harmonic approximation, we introduce a simple technique for
the generation of ensembles of thermally disordered atomic structures, and
calculate for the MgO crystal electron densities of states (DOS) and the on-
site potential probability distributions for the ensembles generated within the
classical and quasi-classical harmonic approximations, molecular dynamics
and uncorrelated Gaussian atomic disorder models. An account of the zero-
energy vibrations even at room temperature results in a significant increase in
the mean square atomic displacements and, thus, in the probability distributions
of the electrostatic potential and ultimately in the extent of the band tails
in the electron DOS. We also demonstrate that the correlations in atomic
positions affect the electronic structure. We have evaluated directly the on-
site potential autocorrelation function (PAF) for all disorder models, as well as
the temperature dependence of the PAF. The correlation length, L, is shown to
be less than the second nearest neighbour at low temperature and decreasing to
below the nearest neighbour distance at T = 500 K. The short correlation length
obtained in the direct modelling is in agreement with the Urbach–Martienssen
rule for the optical absorption edge observed experimentally.

1. Introduction

An atomic disorder in solids profoundly modifies their electronic properties. This effect
may become especially important in the electronic and optical properties of crystals with
strong electron–lattice interaction. In particular, Citrin and co-authors demonstrated that
the electron–phonon coupling leads to a significant broadening of the valence bands of the
alkali halide crystals as observed in the x-ray and ultraviolet photoemission spectra [1]. Part
of this broadening has been attributed to the local lattice relaxation accompanying the hole
localization in the valence band. The temperature-dependent broadening is also shown to
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be significant suggesting the importance of the atomic thermal disorder in the electronically
ground state. Another phenomenon in the dielectrics linked to the thermal disorder is an
exponential temperature dependence of the optical absorption coefficient α(h̄ω), known as the
Urbach–Martienssen rule [2]:

α(h̄ω) ∼ exp{σβ(h̄ω − h̄ω0)}. (1)

Here ω is a circular frequency of the incident light, β = (kB T)−1 is the inverse temperature, h̄
and kB are, respectively, the Planck and the Boltzmann constants, and ω0 and σ are the fitting
parameters, which themselves may depend on temperature. Extensive theoretical studies of
the microscopic origin of the Urbach–Martienssen rule gave rise to a qualitative picture which
can be summarized as follows [3]. A disorder in the positions of atomic nuclei causes the
fluctuations in the electron potential 	v, which in turn result in the appearance of tails at
the band edges of the electronic density of states (DOS), often referred to as Lifshitz or band
tails [4]. A decay of these tails into the band gap region is predominantly exponential with
the exponent being proportional to the variance σ 2 of the potential probability distribution
g(v) [5], Electron states in Lifshitz tails are characterized by the progressively increasing
degree of localization as the eigenvalues extend into the band gap. It has been suggested
that the contribution of the states in the Lifshitz tails to the optical absorption is responsible
for the exponential behaviour of the absorption coefficient α(h̄ω). Sa’Yakanit et al [6]
argued that the exponential shape of the band tails alone is sufficient for the description of the
exponential behaviour of α(h̄ω). However, Dow and Redfield [7] and also Toyozawa and Sumi
[8] pointed out that both the convolution of the occupied and empty bands and the optical
transition probabilities may play a crucial role in certain systems. In particular, Sumi and
Toyozawa [8] studied the excitonic effect on the optical absorption coefficient in narrow-band
crystals.

An appearance of the band tails can be qualitatively explained using a model tight-
binding Hamiltonian with diagonal Gaussian disorder [9]. In this approach the perturbation
potential V of the perfect crystal Hamiltonian, H0, introduces a zero-mean Gaussian
disorder in the on-site matrix elements. However, the usefulness of the model Hamiltonian
approach is limited when the quantitative characterization of disorder in specific systems is
required.

First, approximations must be made about the shape of the probability distribution,g(v), of
the potential felt by the electrons and about the variation of this distribution with temperature.
The important prediction of all mean field linear theories is that the potential probability
distribution is Gaussian [10]. Although this is found to be the case in a number of dielectric
systems [11–13], the validity of the linear approximation to different types and levels of
disorder ought to be verified for specific systems [14].

In the case of thermal disorder, a ground state electronic structure can be considered as
adiabatically following the atomic trajectories. Hence, the probability distribution for the
potential is uniquely characterized by the distributions in atomic displacements. With regard
to the modelling of specific systems, two issues are of interest. First, as evidenced by the
x-ray, ultraviolet and optical spectroscopy experiments [15], band tails in polar dielectrics
persist even at very low temperatures. Therefore, it has been argued that low temperature
band tails may originate from extrinsic (impurities and self-defects) rather than from intrinsic
thermal disorder [16]. At the same time it is recognized [7] that the amplitudes of the potential
fluctuations in pure polar dielectrics will depend on the optical phonon population, which
at sufficiently low temperatures obeys quantum rather than classical statistics. In crystals
with high Debye temperature, the zero-point phonons may significantly contribute to the
atomic mean square displacements [17] (MSD), thus affecting the potential fluctuations and
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the electronic band tails even near absolute zero temperatures. We note, in passing, that the
vast majority of the dynamic simulations consider atomic motion classically (even though the
forces upon atoms may be considered quantum mechanically as, for example, in the Born–
Oppenheimer or Car–Parrinello ab initio molecular dynamics). We shall demonstrate that
atomic disorder due to zero-point phonons in crystalline MgO results in the appearance of
observable band tails, and the effect of quantum statistics for the phonons is still strong at
room temperature.

The second related issue concerns the fact that the electrostatic potential fluctuations on
the spatially separated lattice sites correlate. This effect is neglected in the diagonal disorder
models. It is known, however, that the correlations between the potential fluctuations on
distant atoms have a significant effect on the electronic structure. Halperin and Lax [18] first
pointed out that the shape of the electronic DOS, ρ(E), deep in the band tail region is coupled
exponentially to the disorder correlation length, L:

lnρ(E) ∝ En(L)

where in three-dimensional systems n varies between 1/2 and 2 as L changes from 0 (white
noise limit) to ∞ (translational order). They also demonstrated that n is bound within the
above limits in the systems with electronically screened Coulomb interaction. An exact
account of the potential correlations on the Lifshitz tails has been obtained for the so-
called correlated Gaussian random potential [19], where various monotonic isotropic decay
forms for the potential autocorrelation function (PAF) B(r) = 〈v(0)v(r)〉0 were considered.
These calculations revealed that for the Urbach rule to hold, the disorder correlation length
must be sufficiently short, i.e. not exceeding one lattice constant. To the best of our
knowledge, no direct evaluations have been made of thermal disorder correlation length
in crystalline polar systems and its influence on the band structure. Towards this goal
Koslowski first calculated the band tails in molten salts [11] within the topological and
Madelung potential disorder. He concluded that the topological disorder mainly shifts the
bands, while, together with the potential disorder, it results in the appearance of the band
tails. However, the question of the potential fluctuation correlation length has not been
discussed.

In this paper we present the first attempt to calculate the potential autocorrelation function
directly for a thermally disordered crystalline dielectric. We consider crystalline MgO as a
case study and calculate the electron DOS, Madelung potential probability distributions and
potential autocorrelation functions for statistical ensembles of atomic configurations generated
within different models of thermal disorder. Magnesium oxide is a wide-gap dielectric with
a rock salt structure. It is characterized by a high Debye temperature [20] (θD = 941 K) and
retains its harmonic properties to relatively high temperatures [21].

First, we consider an ensemble of instantaneous atomic configurations generated within
classical molecular dynamics (MD) simulations. In order to account for the effects of zero-
point phonon disorder, we generate the ensemble of configurations within a quasi-classical
harmonic approximation (QHA). To verify the applicability of the harmonic approximation
we consider an ensemble generated within the classical harmonic approximation (CHA) and
compare its atomic and electronic properties with those of the ensemble generated by the
classical MD. And finally, to discuss the effects of the atomic correlations, we generate the
ensemble of atomic configurations within the uncorrelated Gaussian atomic disorder model
(UGAD).

We then calculate the electronic structure of the ensembles thus generated, and proceed
with the evaluation of the probability densities of the on-site electrostatic potential and the
potential autocorrelation functions B(r) in the above models.
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2. Calculation procedure

2.1. Shell model Hamiltonian

We utilize the Born–Oppenheimer approximation, that is, for each instantaneous atomic
configuration considered, we calculate its electronic ground state ignoring the kinetic energies
of the atomic nuclei.

To study the effect of thermal disorder, first the ensembles of the atomic configurations
must be generated so that their electronic properties can be calculated and statistically averaged.

To generate the disordered atomic configurations we employ the shell model interatomic
potentials developed by Stoneham and Sangster [23] and utilized in the general utility lattice
program (GULP) code [24] for the lattice dynamics and MD simulations. In this model
the ions interact electrostatically and elastically via the pairwise central potentials of the
Buckingham form. The ionic charges are taken to be ±2e for the Mg and O ions and cations
are considered unpolarizable. The parameters for the short-range interaction were fitted to
reproduce the experimental lattice geometry and the dielectric and elastic constants. This set
of potentials has been extensively tested for the MD modelling by Fincham and co-authors
[21] and was found to predict fairly well the phonon dispersion, the dielectric and elastic
constants at ambient pressures and temperatures, as well as the volume thermal expansion and
compressibility of crystalline MgO in a wide interval of temperature and pressure.

2.2. Models for thermal disorder

In all our calculations we consider a cubic supercell of 512 atoms (4 × 4 × 4 extension of the
crystalline unit cell of eight ions) subject to periodic boundary conditions.

First we consider the ensemble of atomic configurations generated by the classical MD.
We undertake a microcanonical MD (constant number of particles, volume and the total
energy (NVE)) at temperatures of 100, 300 and 500 K. Shells on the oxygen atoms are treated
adiabatically, i.e. at each MD time step they are relaxed to their equilibrium positions. In all
calculations, the time step has been chosen as 0.5 fs, which assured no drift in the total energy
of the system within the time range of up to 20 ps.

The zero-phonon effects in atomic disorder can be introduced within the harmonic
approximation, according to which a displacement operator of the individual atom i from
the lth unit cell in the Cartesian direction α from its perfect lattice position R(li) is expressed
in terms of the displacement operators of the crystal normal modes, Â(qj),

ûiα(l) =
∑
qj

(
h̄

2MiNω(qj)

)1/2

e(iα | qj) exp{iqR(li)}Â(qj) (2)

where N is the number of unit cells, Mi the mass of the atom i, ω(qj) the harmonic frequency
of the phonon specified by the wave vector q and the branch number j, and e(iα | qj) is the iα
component of the corresponding eigenvector.

In what follows, we consider a supercell assumed to be large enough to contain all the
physically important phonons. Then, the expression for atomic diplacement (2) reduces to the
central supercell only, that is, to the conditions q = 0, l = 0,N = 1,

ûiα =
∑
j

(
h̄

2Miωj

)1/2

e(iα | j)Âj (3)
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where the subscript j now numerates all the �-point phonons within the supercell. Using the
orthonormality conditions for the eigenvectors e(iα | j) the expression for the atomic mean
square displacement is obtained

〈
u2
iα

〉 = h̄

2Mi

∑
j

e2(kα | j)
〈
A2
j

〉
ωj

(4)

where angular brackets indicate the quantum mechanical average.
In order to generate atomic displacements uiα, we first make the quasi-classical

approximation; that is, we replace the operators in equation (3) by their expectation values.
Next, we assume that the system of interest is at thermodynamic equilibrium at temperature
T, and consider statistical distributions of the individual phonon coordinates Aj . In the
QHA approximation the coordinate probability distribution P(Aj ) is given in terms of the
eigenfunctions nj(A) of the corresponding harmonic oscillator

PQ(Aj ) = 1

Zj

∞∑
n=0

e−βh̄ωj (n+ 1
2 )| n(Aj)|2 (5)

where the subscript Q refers to the quantum statistics case; Zj is the partition function for the
ensemble of harmonic oscillators with frequency ωj at temperature T:

Zj = Tr
[
e−βh̄ωj (n+ 1

2 )
]
. (6)

The summation in the equation (5) can be carried out analytically using the explicit form for
the eigenfunctions  n(Aj) and the generating function method for the Hermite polynomials
[22]. The result is

PQ(Aj ) = 1√
2πσQ

exp

(
− A2

j

2σ 2
Q

)
(7)

with

σ 2
Q = h̄

2ωj
coth

βh̄ωj

2
. (8)

Therefore, the coordinate probability distribution for the phonon j is Gaussian with the
variance given by equation (8). Recalling that the mean square displacement of the

phonon coordinate
〈
A2
j

〉
is proportional to the mean phonon population n̄j , which at thermal

equilibrium obeys the Bose–Einstein statistics, one can verify that

σ 2
Q = h̄

2ωj

〈
A2
j

〉
. (9)

Similarly, assuming classical statistics for phonons, one can show that in the harmonic
approximation the probability distribution for the phonon coordinate is also Gaussian
(equation (7)) but with the classical variance σ 2

C :

σ 2
C = (

βω2
j

)−1
. (10)

Equations (7)–(10) are the quantitative manifestations of Bloch’s second theorem [25]
stating that the coordinate distribution of an ensemble of harmonic oscillators (classical or
quantum) is Gaussian. The variance σ 2

Q reduces to σ 2
C in the limit of high temperature or low

frequency (βh̄ωj � 1).
Taking into account the above considerations, we adopt the following procedure for the

generation of atomic disorder in a harmonic system:
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1. Given the system’s shell model Hamiltonian, solve the lattice dynamic problem (subject
to the periodic boundary conditions), that is, calculate the eigenvectors e(j | kα) and
frequencies ωj. This step is undertaken using the GULP code [24].

2. For each phonon j generate a random phonon coordinate Aj from the Gaussian
distribution with a zero mean and variance σ 2 defined by equations (8) or (10) for the
quantum or classical approximations, respectively.

3. Given the coordinates of all the phonons Aj , calculate the Cartesian displacements ukα
for each atom k according to equation (3).

The classical harmonic approximation can be critically tested by comparison of the atomic
MSDs calculated using equation (4) with the values obtained by a direct MD simulation.

The outlined method allows generation of quantum or classical ensembles of atomic
configurations by utilizing the system’s detailed dynamic information (including interatomic
correlations).

It is instructive to ask to what extent the electronic structure is sensitive to the correlations
in atomic positions. On this account we examine an ensemble of atomic configurations
generated in the assumption of uncorrelated Gaussian atomic disorder. It can be demonstrated
[17] that the probability density for the atomic displacement of the individual atoms is
Gaussian:

P(u) = 1√
2π
〈
u2
j

〉 exp


− u2

2
〈
u2
j

〉

 (11)

where 〈u2
j 〉 is the MSD of the atomic species j. Provided that each atom is considered as

an independent oscillator (as in the Einstein solid), individual atomic displacements can be
drawn independently from a Gaussian distribution (11) with the MSDs, 〈u2

j 〉, calculated within
QHA, CHA or MD simulations. Note that although the correlations in the atomic positions are
neglected in the UGAD model, some correlations between the fluctuations of the electrostatic
potential on remote lattice sites are still present due to the self-consistent character of the
electronic structure calculations.

2.3. Electronic structure calculations

To calculate the electronic structure of the ensembles of atomic configurations thus generated,
we use a supercell approach and the semi-empirical LCAO Hartree–Fock method at the level of
intermediate neglect of differential overlap (INDO), implemented in the SYM–SYM package
[26]. INDO parameters were fitted to represent the geometry of the MgO molecules, the lattice
constant, the valence band and the energy gap widths of the perfect MgO crystal [27]. In
the LCAO approach the eigenfunctionsψε(r) are expressed as a linear combination of atomic
orbitals (AO): (we consider the valence s-orbitals on magnesium ions and s- and p-valence
orbitals on oxygen ions)

ψε(r) =
∑
iα

ciα(ε)φα(r) (12)

where i enumerates the atoms and α specifies the atomic orbital, ciα(ε) are the ortho-normal
components of the eigenvector belonging to the eigenvalue ε. Eigenvectors, ciα(ε), and
eigenvalues, ε, are obtained from the self-consistent solution of the Hartree–Fock equation.
An electron DOS is then constructed by Gaussian broadening of the one-electron spectra (σ =
0.1 eV).
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Besides the one-electron eigenstates ψε(r), we also calculate effective ionic charges
{qi} (using the modified Löwdin population analysis [28]) and on-site electrostatic potentials
{vi} resulting from the charge distributions. These data are used to generate the probability
distributions of the electrostatic potential, gs(v),

gs(v) =
〈
δ


∑
j ( �=i)

qj

|ri − rj | − v

〉

i∈s

(13)

where δ(x − x0) is a Dirac δ-function, qj and rj denote the charge and the position vector of
an ion j, respectively, and j runs over all the ions in the system except ion i, s denotes the
sublattice (s = Mg or O), and the angular brackets indicate the ensemble average over the
atomic sites belonging to the sublattice s. Note that due to the self-consistent character of
the solution, ionic charges qj fluctuate together with the on-site Madelung potential. Thus a
disorder in atomic positions causes fluctuations of both the electrostatic potential and effective
ionic charges [14].

Given the on-site electrostatic potentials {vi} on the ions located at points ri , we introduce
the spherically averaged on-site potential autocorrelation function,

B(rz) = 〈v(0)v(r)〉0 − 〈v2〉 = 1

〈v2〉
∑
ij

	v(ri )	v(rj )θ(rii′ − r1z)θ(r2z − rii′ ) (14)

where rz indicates the radius of the coordination sphere z, around which the function is
evaluated,	v(ri ) = ∑

k( �=i)
qk

|ri − rk | −〈v〉 is a fluctuation (deviation from the sublattice average)
of the electrostatic potential on the atomic core with a position vector ri. Index i runs over all
the lattice sites, and the product of the Heaviside step functions θ(x − r1z)θ(r2z − x) ensures
that for a chosen lattice site i, the averaging is taken over the spherical shells containing
all the atoms from a given coordination sphere, z (e.g. for the first coordination sphere, we
choose r11 = a0/2 and r21 = a0(1 +

√
2)/2, where a0 is the nearest Mg–O distance in the

perfect lattice, etc). Note that the mean values of the on-site potentials on the cation and anion
sublattices are equal in absolute value, although their variances may differ [14]. Therefore,
we define 〈v2〉 in equation (14) as an average variance for the anion and cation sublattices.

3. Results

3.1. Atomic mean square displacements

The atomic MSDs calculated according to equation (4) for the CHA and QHA models are
shown in figure 1 as a function of temperature. The MSDs predicted by the classical MD
simulations at T = 100, 300 and 500 K are also shown. We note that in the QHA and CHA
models, atomic MSDs are calculated in the approximation of the temperature-independent
frequency spectrum. Thus, an effect of thermal lattice expansion on atomic MSDs is neglected.
For the sake of comparison all the MD calculations are also made at the same constant volume.
The following main features result from these calculations:

1. Atomic mean square displacements are different for different sublattices, with the lighter
oxygen atoms having larger MSD.

2. The MSD obtained from the MD and those from the CHA are very similar. This justifies
the applicability of the harmonic approximation in the temperature range studied.

3. Accounting for zero-point phonons in the QHA model results in a significant increase
of atomic MSDs with respect to those predicted by classical approximation. The MSDs
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Figure 1. Temperature dependence of mean square ionic displacements calculated for magnesium
and oxygen ions within the classical and quantum harmonic approximations, and directly from
MD.

calculated with the QHA model are approximately twice the classical values at 100 K and
a difference is still noticeable at T = 500 K.

3.2. Probability distributions for the on-site potential and electron DOS

The larger atomic MSDs affect the probability distributions of the on-site electrostatic potential
for the magnesium and oxygen sublattices. The probability distributions (13) averaged over
the sets of 6 to 16 atomic configurations generated within the MD, QHA and UGAD
models at T = 300 K are shown in figure 2. In the UGAD approach (equation (11))
the atomic MSDs obtained within the classical MD simulations at this temperature are used.

All the models predict the on-site potential probability distribution to be Gaussian with
the mean value close to that of the on-site electrostatic potential in the perfect lattice. However,
the distribution variances 〈v2〉 differ significantly. As expected (from larger atomic MSDs) the
distribution predicted by the QHA is wider than that obtained with the classically generated
configurations. Furthermore, the variance of the potential probability distribution resulting
from the UGAD model is a factor of 1.7 larger than that predicted by classical MD, albeit the
same mean square atomic displacements are used in both models. Evidently, an overestimation
of the fluctuations of the on-site electrostatic potential in the UGAD model results from the
neglect of the correlations in the atomic positions. This strong effect can be understood by
considering the atomic structures statistically. The different atomic configurations contribute
to ensemble averaging with the Boltzmann factor reflecting the probability of their realization
at a given temperature. When the probability factor is neglected (as in the case of the UGAD
model), the highly improbable vibrational excitations become dominant in the ensemble
averages. We find that the average energy per MgO molecule in the UGAD ensemble is
0.03 eV higher than in the ensemble generated by the MD simulations. An evidently strong
correlation effect in MgO is related to the long phonon life times in this material even at
relatively high temperatures.
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Figure 2. On-site electrostatic potential distributions for the magnesium (left) and oxygen (right)
sublattices derived for three models at 300 K: UGAD (solid curves) with the atomic MSD equal
to that in classical MD; QHA (dashed curves); classical MD (long-dashed curves). The curves
are the Gaussian approximations to the distributions, the actual histograms of the raw data for the
UGAD model are also shown for comparison.
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Figure 3. The valence band densities of states, calculated for the representative atomic structures
corresponding to the UGAD, QHA and classical MD models at 300 K. The DOS of the perfect
MgO lattice is also shown for comparison. The broadening parameter is 0.1 eV in all calculations.

As discussed in section 1, a finite width of the distribution of electrostatic potential affects
the electronic structure. The valence band electronic DOS calculated for the representative
atomic configurations generated by different models at T = 300 K are shown in figure 3. It
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Figure 4. A blow-up of figure 3 showing the valence band tail area of the DOS for five representative
configurations in each model.

is seen that the tail in the DOS predicted by the QHA is more than 0.5 eV longer than that
of the classically disordered system. The tail in the DOS of the uncorrelated system is even
longer. To demonstrate a degree of statistical scatter in electronic DOS, we depict in figure 4
the tails of the valence band DOS calculated for five different atomic configurations within
each model. Clearly, the variations in DOS calculated for atomic configurations generated by
the same model are smaller than the DOS variations between the different models.

3.3. Potential autocorrelation function

The potential autocorrelation function (14) for up to the sixth coordination shell has been
evaluated for the classical MD, QHA and UGAD ensembles, and the results for T = 300 K are
depicted in figure 5. It is evident that different models predict different decays for the PAF.
In order to quantify these differences we have modelled our numerical data by two analytical
forms for PAF used in the literature: (i) the exponential decay model

B1(r) = 〈v2〉 exp

{
−
(
r

R1

)m1
}

(15)

and (ii) the power decay model

B2(r) = 〈v2〉
[

1 +

(
r

R2

)2
]−m2

. (16)

The exponential model is a generalization relevant for those disordered systems where the
fluctuations of the potential are stipulated by the randomly distributed charged impurities
interacting via potentials of different range (e.g. m = 1 corresponds to the Coulomb-screened
potential model [18], m = 2 represents the Gaussian model [19], etc). The power decay model,
B2(r), originates from the models for topological and thermal disorder in polar dielectrics
[19].
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Figure 5. The autocorrelation function for the on-site electrostatic potential (14) calculated for
the UGAD, QHA and classical MD models at 300 K. The curves (respectively solid, dashed and
long-dashed) represent the best fits by the exponential decay function (15) with the parameters
listed in table 1.

Table 1. Fitted parameters for the potential autocorrelation function in the forms B1(r) =
〈v2

0〉 exp{−( |r|
R1
)m1 } and B2(r) = 〈v2

0〉[1 + ( r
R2
)2]−m2 for the UGAD model (300 K), QHA

(300 K), and classical MD (100, 300 and 500 K). The statistical uncertainty for 〈v2
0 〉 is shown

in brackets. Parameters Ri and the correlation length Li are in units of the MgO lattice constant a0.

Model 〈v2
0〉 (eV2) R1 (a0) m1 L1 (a0) R2 (a0) m2 L2 (a0)

UGAD 300 K 1.22 (0.05) 1.202 1.833 0.89 3.85 10.714 0.90
QHA 300 K 0.58 (0.04) 1.120 1.539 0.94 1.75 2.915 1.03
MD 100 K 0.12 (0.01) 1.060 1.335 1.02 1.25 1.842 1.28
MD 300 K 0.35 (0.02) 1.030 1.372 0.96 1.32 2.072 1.15
MD 500 K 0.61 (0.05) 1.022 1.651 0.81 2.15 4.862 0.83

The best-fit parameters R and m for the models (15) and (16) are listed in table 1
together with the calculated variances 〈v2〉. We observe that both functional forms fit the
calculated data with almost the same accuracy (the exponential form on average performs
marginally better). As seen in figure 6, the exponential model (15) and the power model (16)
decay almost identically in the region between one and three lattice constants. At the same
time, the values of the decay parameters R in the two models are very different. We note
that, in general, the parameter R alone does not reflect the characteristic correlation length for
the fluctuations of the potential. For example, one can show that in the screened Coulomb
potential model (m = 1 in equation (15)), the parameter R is equal to the screening length, thus
characterizing the properties of the medium rather than the correlation length (the screened
Coulomb model assumes no correlations between the fluctuations of the potential). In the
search for a universal fluctuation length parameter (which will generally depend on both R
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Figure 6. The potential autocorrelation function as calculated with the MD model at T = 300 K
(circles). The lines represent the best fits to the PAF models given by equations (15) and (16) with
the parameters listed in table 1.

and m), we follow the work of John and co-authors [19] and introduce a natural correlation
length, L, of the PAF:

L2 =
∫∞

0 r2B(r) dr∫∞
0 B(r) dr

. (17)

Straightforward integration for the power exponential model (15) gives the following relation
between L and parameters R1 and m1:

L1 = R1

√√√√� (3m−1
1

)
�
(
m−1

1

) (18)

where �(x) is a gamma function. The values of the correlation length, L, calculated for the
exponential (15) and power decay (16) models, are summarized in table 1.

We have also studied the temperature dependence of PAF calculated in the classical MD
model within the temperature range 100–500 K (table 1). We find the potential variance 〈v2〉
to be proportional to temperature as expected in the classical harmonic approximation. At the
same time both models for PAF predict a decrease of L with temperature. Also the values of
L predicted by the two models are similar. We note in passing that the R parameter slightly
decreases with temperature for a power exponential model and increases for the power decay
model (table 1), confirming that this parameter alone does not characterize the decay behaviour
of the autocorrelation function.

4. Discussion

We have examined the electronic properties of different models of thermal disorder in an
otherwise perfect MgO crystal. First we observe that all the methods predict the on-site
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electrostatic potential distribution to be of Gaussian shape. The assumption of Gaussian form
for the potential probability distributions is at the heart of most tractable models of disorder,
including those for heavily doped semiconductors [29],Coulomb liquids [10,11], and statically
and dynamically disordered dielectrics [3, 18, 19]. It has been demonstrated [10] that the
Gaussian approximation for the probability distribution follows from the linear approximation
in mean field theories [10], which is apparently well-obeyed in MgO as suggested by our
calculations. Interestingly, a Gaussian distribution is predicted even within the UGAD
approximation, implying that the atomic correlations do not affect the general shape of the
potential distribution. We have argued elsewhere [14] that this is a consequence of the flatness
of the on-site electrostatic potential near the perfect crystal sites of cubic binary dielectrics.

At the same time, the variance of the potential distribution, predicted by different models,
varies significantly, in that the classical model significantly underestimates, while the UGAD
approximation overestimates the distribution width 〈v2〉. We have also verified that the
variance of the distribution increases linearly with temperature [14]. At T = 300 K the QHA
model predicts the standard deviation of 0.76 eV (table 1). This is significantly larger than the
value of 0.13 eV estimated by Dow and Redfield [7] in the assumption that only the �-point
LO phonon contributes to the 〈v2〉. This large discrepancy suggests that the contribution from
other phonons is important.

The question, what phonons couple most to the electrons, has been widely discussed in
the literature and remains largely open. Long- and short-wave optical phonons have been
suggested for polar crystals (see the paper by Dow and Redfield for a detailed discussion
[7]). Also, the possible role of acoustic phonons in polaron formation has been discussed
by Toyozawa [30]. We note that the problem of selectivity of phonons in electron–phonon
coupling can be addressed systematically within the QHA approach, presented in this paper,
by generating ensembles of configurations with only selected phonons being populated. The
work in this direction is currently under way.

Although the electron DOSs calculated in this study are not sufficiently accurate to
investigate directly the asymptotic behaviour of the band tails, ρ(E), we have demonstrated that
the shape of the band tails is quite sensitive to the details of the phonon structure (fluctuation
correlations) and the phonon statistics (fluctuation amplitudes) incorporated in a particular
model of disorder. We have not been able to discriminate between the exponential and power
decay models for the PAF in MgO crystal. Despite possibly different underlying physics
behind these models, we suggest that the recovery of the exact form of PAF from the shape
of the band tails is beyond the reach of any conceivable experiment. However, we identified
and directly estimated for MgO the two main parameters of the PAF, namely the variance of
the probability distribution 〈v2〉 and the disorder correlation length, L. As seen in table 1, the
exponential and the power decay models predict very similar correlation length, which does
not exceed the second neighbour distance at low temperatures and decreases to below the
nearest neighbour distance at room temperature.

Our study suggests that zero-point phonons significantly affect atomic disorder. Therefore,
intrinsic thermal disorder in polar dielectrics may result in the appearance of the observable
band tails at low temperature. It is interesting to note that, since the potential variance 〈v2〉
is known to increase linearly with temperature, a temperature dependence of the correlation
length, L, can, in principle, be experimentally probed by recovering the parameters for PAF,
e.g. from the temperature dependence of the valence band tail as observed in the x-ray or UV
spectroscopy. Also, an analytical model for PAF in polar dielectrics can be derived in the
harmonic limit and compared with the experiment.

Finally, in this paper we discussed only the influence of thermal disorder on the shape of
band tails. However, it is well established that the optical properties of the polar dielectrics
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are not described by the ground state DOS alone. The convolution effects (the joint density of
states) of the initial and final states as well as the optical transition matrix elements have been
suggested as important [7]. The latter may be especially significant recalling that the single
particle states in the band tails are progressively more localized and the overlap between the
states in the tail of the valence and conduction bands may become small. Also, the excitonic
effects may influence the behaviour of the optical absorption edge of narrow band materials
[8]. To account for these effects, methods must be employed which can reliably reproduce
the self-trapping process. In this respect, some of the problems with the existing electronic
structure methods have been highlighted elsewhere [14, 31].

In summary, we have considered the effect of zero-point phonons and atomic correlations
on the electronic structure of thermally disordered MgO. We conclude that both effects are
substantial even at room temperature.
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